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A sensitivity method widely used to screen factors in models of large dimensionality is the design proposed 
by Morris (1991). The Morris method deals efficiently with models containing hundreds of input factors 
without relying on strict assumptions about the model (such as for instance additivity or monotonicity of 
the model output). The method is relatively economical in terms of model evaluations required as with 
Morris the number of model executions is a linear function of the number of input factors involved. 
The experimental plan proposed by Morris is composed of individually randomized 'one-factor-at-a-time' 
experiments: the impact of changing one factor at a time is evaluated in turn. Each input factor may assume 
a discrete number of values, called levels, which are chosen within the factor range of variation.  
The sensitivity measures proposed in Morris’ original work of 1991are based on what is called an 
elementary effect. The elementary effect for the ith input is defined as follows. Let ∆ be a predetermined 
multiple of 1/(p-1). For a given value of x, the elementary effect of the ith input factor is defined as 
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where ),...,,(x kxxx 21=  is any selected value in Ω such that the transformed point (x + ie ∆), where 

ie  is a vector of zeros but with a unit as its ith component, is still in Ω for each index i=1,..,k.  
The finite distribution of elementary effects associated with the ith input factor, is obtained by randomly 
sampling different x from Ω, and is denoted by iF . 
In Morris (1991), two sensitivity measures were proposed for each factor: µ, an estimate of the mean of the 
distribution iF , and σ, an estimate of the standard deviation of iF . A high value of µ indicates an input 
factor with an important overall influence on the output. A high value of σ indicates a factor involved in 
interaction with other factors or whose effect is non-linear.  
Here we propose to consider a third sensitivity measure: µ*, which is an estimate of the mean of the 
distribution of the absolute values of the elementary effects (here denoted as iG ).  
In our view µ* is the most appropriate to rank factors in order of importance. The reason is that if the 
distribution iF  contains negative elements, which occurs when the model is non-monotonic, when 
computing its mean some effects may cancel each other out. Thus a factor which is important but whose 
effect on the output has an oscillating sign may be erroneously considered as negligible. 
The Morris method has several advantages: it is simple, easy to implement, and results are easily 
interpreted. Furthermore it is economic in the sense that it requires a number of model evaluations that is 
linear in the number of model factors. Apparently it could be regarded as a local method because it relies 
on a sensitivity measure (the elementary effect), which uses incremental ratios and is therefore a local 
measure. However, the final measure µ* is obtained by averaging the absolute values of several elementary 
effects computed at different points of the input space. In this sense, as it attempts to explore several 
regions of the input space, the method can be regarded as global.  
Next, we attempted to make a comparison between the sensitivity measures µ* and σ, and the class of the 
so-called variance based sensitivity measures, also known as importance measures or sensitivity indices.  



 2

Variance based measures choose as a measure of the main effect of a factor iX  on the output, an 
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aim is to rank factors according to the amount of output variance that is removed when we learn the true 
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obtained by fixing iX  to its true value *ix .  This variance is taken over all factors but factor iX . The 

problem is that we do not know what *
ix  is for each iX  and therefore it is reasonable to take the average 

of the above measure over all possible values *
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equivalent to betting on the highest ( )( )iXYEV . The sensitivity measure above is thus obtained by 

normalising this quantity by the output unconditional variance )(YV  to obtain ( )YV
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which is known in the literature as the “first order effect” of iX  on Y , denoted by iS .  

Another sensitivity measured based on the variance decomposition is the total sensitivity index, 
iTS . The 

total index is defined as the sum of all effects involving the factor iX . 
iTS  is estimated by the quantity 

( )( )iXYVE − , where the symbol -i denotes all but index i.  
Variance based techniques have several desirable properties. They are “model free”, in the sense of 
independent from assumptions about the model such as linearity, additivity and so on. They are global, i.e. 
they explore the entire interval of definition of each factor and the effect of each factor is taken as an 
average over the possible values of the other factors. They are usually quantitative, which is they can tell 
how much factor a is more important than factor b. They are able to treat grouped factors as if they were 
single factors, a property of synthesis that may be essential for the agility of the interpretation of the results.   
The choice to make use of a screening method such as Morris rather than of a variance-based method is due 
merely to computational reasons, i.e. in cases where the cost of computing a variance-based measure is 
unaffordable. The Morris method is much cheaper, in terms of model evaluations, than the variance based 
measures, and is therefore suitable for models that are computationally expensive or that contain a large 
number of input factors.  
In this work we compared the variance based measures and the sensitivity measures µ* and σ. Both 
theoretical reasoning and experimental results showed that the measure µ* is the best parallel of the total 
sensitivity index 

iTS while σ is the parallel of the measure ( iT SS
i

− ).   

Thirdly, we tried to extend to the Morris measure a desirable property of the variance–based methods: the 
capability to treat group of factors as if they were single factors. The Morris method was extended to 
perform also when model input factors are divided into groups with good results. 
We conclude by saying that the sensitivity measures µ* (a modified version of the Morris µ) and σ 
(proposed by Morris) can be effective in the same settings where the variance based are. Their use is 
recommended when the problem is such that the computation of variance-based measures is not affordable. 
Although less accurate, they can be interpreted similarly to the 

iTS and to the ( iT SS
i

− ). Furthermore 

they have several of the desirable properties of a variance-based measure, including the capability to work 
with group of factors. 
 


